反三角函数

2025-07-15 15:39:05

在数学中,反三角函数(英语:inverse trigonometric function)是三角函数的反函数。

反三角函数示意图

由于技术原因,此旧版图表已停用,并须迁移至新版图表。造成您的不便,我们深表歉意。

几个反三角函数的图形,其中,反馀切以复变分析定义,因此在原点处出现不连续断点

目录

1 数学符号

2 主值

3 反三角函数之间的关系

4 三角函数与反三角函数的关系

5 一般解

6 反三角函数的导数

7 表达为定积分

8 无穷级数

9 反三角函数的不定积分

9.1 举例

10 加法公式和减法公式

10.1 arcsin x + arcsin y

10.2 arcsin x - arcsin y

10.3 arccos x + arccos y

10.4 arccos x - arccos y

10.5 arctan x + arctan y

10.6 arctan x - arctan y

10.7 arccot x + arccot y

10.8 arcsin x + arccos y

10.9 arctan x + arccot y

11 注释

12 参见

13 外部链接

数学符号

编辑

符号

sin

1

,

cos

1

{\displaystyle \sin ^{-1},\cos ^{-1}}

等常用于

arcsin

,

arccos

{\displaystyle \arcsin ,\arccos }

等。但是这种符号有时在

sin

1

x

{\displaystyle \sin ^{-1}x}

1

sin

x

{\displaystyle {\frac {1}{\sin x}}}

之间易造成混淆。

在编程中,函数

arcsin

{\displaystyle \arcsin }

,

arccos

{\displaystyle \arccos }

,

arctan

{\displaystyle \arctan }

通常叫做

a

s

i

n

{\displaystyle \mathrm {asin} }

,

a

c

o

s

{\displaystyle \mathrm {acos} }

,

a

t

a

n

{\displaystyle \mathrm {atan} }

。很多编程语言提供两自变量atan2函数,它计算给定

y

{\displaystyle y}

x

{\displaystyle x}

y

x

{\displaystyle {\frac {y}{x}}}

的反正切,但是值域为

[

π

,

π

]

{\displaystyle [-\pi ,\pi ]}

在笛卡尔平面上

f

(

x

)

=

arcsin

x

{\displaystyle f(x)=\arcsin x}

(红)和

f

(

x

)

=

arccos

x

{\displaystyle f(x)=\arccos x}

(绿)函数的常用主值的图像。

在笛卡尔平面上

f

(

x

)

=

arctan

x

{\displaystyle f(x)=\arctan x}

(红)和

f

(

x

)

=

arccot

x

{\displaystyle f(x)=\operatorname {arccot} x}

(绿)函数的常用主值的图像。

在笛卡尔平面上

f

(

x

)

=

arccsc

x

{\displaystyle f(x)=\operatorname {arccsc} x}

(红)和

f

(

x

)

=

arcsec

x

{\displaystyle f(x)=\operatorname {arcsec} x}

(绿)函数的常用主值的图像。

主值

编辑

下表列出基本的反三角函数。

名称

常用符号

定义

定义域

值域

反正弦

y

=

arcsin

x

{\displaystyle y=\arcsin x}

x

=

sin

y

{\displaystyle x=\sin y}

[

1

,

1

]

{\displaystyle [-1,1]}

[

π

2

,

π

2

]

{\displaystyle [-{\frac {\pi }{2}},{\frac {\pi }{2}}]}

反余弦

y

=

arccos

x

{\displaystyle y=\arccos x}

x

=

cos

y

{\displaystyle x=\cos y}

[

1

,

1

]

{\displaystyle [-1,1]}

[

0

,

π

]

{\displaystyle [0,\pi ]}

反正切

y

=

arctan

x

{\displaystyle y=\arctan x}

x

=

tan

y

{\displaystyle x=\tan y}

R

{\displaystyle \mathbb {R} }

(

π

2

,

π

2

)

{\displaystyle (-{\frac {\pi }{2}},{\frac {\pi }{2}})}

反余切

y

=

arccot

x

{\displaystyle y=\operatorname {arccot} x}

x

=

cot

y

{\displaystyle x=\cot y}

R

{\displaystyle \mathbb {R} }

(

0

,

π

)

{\displaystyle (0,\pi )}

反正割

y

=

arcsec

x

{\displaystyle y=\operatorname {arcsec} x}

x

=

sec

y

{\displaystyle x=\sec y}

(

,

1

]

[

1

,

+

)

{\displaystyle (-\infty ,-1]\cup [1,+\infty )}

[

0

,

π

2

)

(

π

2

,

π

]

{\displaystyle [0,{\frac {\pi }{2}})\cup ({\frac {\pi }{2}},\pi ]}

反余割

y

=

arccsc

x

{\displaystyle y=\operatorname {arccsc} x}

x

=

csc

y

{\displaystyle x=\csc y}

(

,

1

]

[

1

,

+

)

{\displaystyle (-\infty ,-1]\cup [1,+\infty )}

[

π

2

,

0

)

(

0

,

π

2

]

{\displaystyle [-{\frac {\pi }{2}},0)\cup (0,{\frac {\pi }{2}}]}

(注意:某些数学教科书的作者将

arcsec

{\displaystyle \operatorname {arcsec} }

的值域定为

[

0

,

π

2

)

[

π

,

3

π

2

)

{\displaystyle [0,{\frac {\pi }{2}})\cup [\pi ,{\frac {3\pi }{2}})}

因为当

tan

{\displaystyle \tan }

的定义域落在此区间时,

tan

{\displaystyle \tan }

的值域

0

{\displaystyle \geq 0}

,如果

arcsec

{\displaystyle \operatorname {arcsec} }

的值域仍定为

[

0

,

π

2

)

(

π

2

,

π

]

{\displaystyle [0,{\frac {\pi }{2}})\cup ({\frac {\pi }{2}},\pi ]}

,将会造成

tan

(

arcsec

x

)

=

±

x

2

1

{\displaystyle \tan(\operatorname {arcsec} x)=\pm {\sqrt {x^{2}-1}}}

,如果希望

tan

(

arcsec

x

)

=

x

2

1

{\displaystyle \tan(\operatorname {arcsec} x)={\sqrt {x^{2}-1}}}

,那就必须将

arcsec

{\displaystyle \operatorname {arcsec} }

的值域定为

[

0

,

π

2

)

[

π

,

3

π

2

)

{\displaystyle [0,{\frac {\pi }{2}})\cup [\pi ,{\frac {3\pi }{2}})}

,基于类似的理由

arccsc

{\displaystyle \operatorname {arccsc} }

的值域定为

(

π

,

π

2

]

(

0

,

π

2

]

{\displaystyle (-\pi ,-{\frac {\pi }{2}}]\cup (0,{\frac {\pi }{2}}]}

如果

x

{\displaystyle x}

允许是复数,则

y

{\displaystyle y}

的值域只适用它的实部。

反三角函数之间的关系

编辑

余角:

arccos

x

=

π

2

arcsin

x

{\displaystyle \arccos x={\frac {\pi }{2}}-\arcsin x}

arccot

x

=

π

2

arctan

x

{\displaystyle \operatorname {arccot} x={\frac {\pi }{2}}-\arctan x}

arccsc

x

=

π

2

arcsec

x

{\displaystyle \operatorname {arccsc} x={\frac {\pi }{2}}-\operatorname {arcsec} x}

负数参数:

arcsin

(

x

)

=

arcsin

x

{\displaystyle \arcsin(-x)=-\arcsin x\!}

arccos

(

x

)

=

π

arccos

x

{\displaystyle \arccos(-x)=\pi -\arccos x\!}

arctan

(

x

)

=

arctan

x

{\displaystyle \arctan(-x)=-\arctan x\!}

arccot

(

x

)

=

π

arccot

x

{\displaystyle \operatorname {arccot}(-x)=\pi -\operatorname {arccot} x\!}

arcsec

(

x

)

=

π

arcsec

x

{\displaystyle \operatorname {arcsec}(-x)=\pi -\operatorname {arcsec} x\!}

arccsc

(

x

)

=

arccsc

x

{\displaystyle \operatorname {arccsc}(-x)=-\operatorname {arccsc} x\!}

倒数参数:

arccos

1

x

=

arcsec

x

{\displaystyle \arccos {\frac {1}{x}}\,=\operatorname {arcsec} x}

arcsin

1

x

=

arccsc

x

{\displaystyle \arcsin {\frac {1}{x}}\,=\operatorname {arccsc} x}

arctan

1

x

=

π

2

arctan

x

=

arccot

x

,

{\displaystyle \arctan {\frac {1}{x}}={\frac {\pi }{2}}-\arctan x=\operatorname {arccot} x,\ }

x

>

0

{\displaystyle \ x>0}

arctan

1

x

=

π

2

arctan

x

=

π

+

arccot

x

,

{\displaystyle \arctan {\frac {1}{x}}=-{\frac {\pi }{2}}-\arctan x=-\pi +\operatorname {arccot} x,\ }

x

<

0

{\displaystyle \ x<0}

arccot

1

x

=

π

2

arccot

x

=

arctan

x

,

{\displaystyle \operatorname {arccot} {\frac {1}{x}}={\frac {\pi }{2}}-\operatorname {arccot} x=\arctan x,\ }

x

>

0

{\displaystyle \ x>0}

arccot

1

x

=

3

π

2

arccot

x

=

π

+

arctan

x

,

{\displaystyle \operatorname {arccot} {\frac {1}{x}}={\frac {3\pi }{2}}-\operatorname {arccot} x=\pi +\arctan x,\ }

x

<

0

{\displaystyle \ x<0}

arcsec

1

x

=

arccos

x

{\displaystyle \operatorname {arcsec} {\frac {1}{x}}=\arccos x}

arccsc

1

x

=

arcsin

x

{\displaystyle \operatorname {arccsc} {\frac {1}{x}}=\arcsin x}

如果有一段正弦表:

arccos

x

=

arcsin

1

x

2

,

{\displaystyle \arccos x=\arcsin {\sqrt {1-x^{2}}},}

0

x

1

{\displaystyle \ 0\leq x\leq 1}

arctan

x

=

arcsin

x

x

2

+

1

{\displaystyle \arctan x=\arcsin {\frac {x}{\sqrt {x^{2}+1}}}}

注意只要在使用了复数的平方根的时候,我们选择正实部的平方根(或者正虚部,如果是负实数的平方根的话)。

从半角公式

tan

θ

2

=

sin

θ

1

+

cos

θ

{\displaystyle \tan {\frac {\theta }{2}}={\frac {\sin \theta }{1+\cos \theta }}}

,可得到:

arcsin

x

=

2

arctan

x

1

+

1

x

2

{\displaystyle \arcsin x=2\arctan {\frac {x}{1+{\sqrt {1-x^{2}}}}}}

arccos

x

=

2

arctan

1

x

2

1

+

x

,

{\displaystyle \arccos x=2\arctan {\frac {\sqrt {1-x^{2}}}{1+x}},}

1

<

x

+

1

{\displaystyle -1

arctan

x

=

2

arctan

x

1

+

1

+

x

2

{\displaystyle \arctan x=2\arctan {\frac {x}{1+{\sqrt {1+x^{2}}}}}}

三角函数与反三角函数的关系

编辑

通过定义可知:

θ

{\displaystyle \theta }

sin

θ

{\displaystyle \sin \theta }

cos

θ

{\displaystyle \cos \theta }

tan

θ

{\displaystyle \tan \theta }

图示

arcsin

x

{\displaystyle \arcsin x}

sin

(

arcsin

x

)

=

x

{\displaystyle \sin(\arcsin x)=x}

cos

(

arcsin

x

)

=

1

x

2

{\displaystyle \cos(\arcsin x)={\sqrt {1-x^{2}}}}

tan

(

arcsin

x

)

=

x

1

x

2

{\displaystyle \tan(\arcsin x)={\frac {x}{\sqrt {1-x^{2}}}}}

arccos

x

{\displaystyle \arccos x}

sin

(

arccos

x

)

=

1

x

2

{\displaystyle \sin(\arccos x)={\sqrt {1-x^{2}}}}

cos

(

arccos

x

)

=

x

{\displaystyle \cos(\arccos x)=x}

tan

(

arccos

x

)

=

1

x

2

x

{\displaystyle \tan(\arccos x)={\frac {\sqrt {1-x^{2}}}{x}}}

arctan

x

{\displaystyle \arctan x}

sin

(

arctan

x

)

=

x

1

+

x

2

{\displaystyle \sin(\arctan x)={\frac {x}{\sqrt {1+x^{2}}}}}

cos

(

arctan

x

)

=

1

1

+

x

2

{\displaystyle \cos(\arctan x)={\frac {1}{\sqrt {1+x^{2}}}}}

tan

(

arctan

x

)

=

x

{\displaystyle \tan(\arctan x)=x}

arccot

x

{\displaystyle \operatorname {arccot} x}

sin

(

arccot

x

)

=

1

1

+

x

2

{\displaystyle \sin(\operatorname {arccot} x)={\frac {1}{\sqrt {1+x^{2}}}}}

cos

(

arccot

x

)

=

x

1

+

x

2

{\displaystyle \cos(\operatorname {arccot} x)={\frac {x}{\sqrt {1+x^{2}}}}}

tan

(

arccot

x

)

=

1

x

{\displaystyle \tan(\operatorname {arccot} x)={\frac {1}{x}}}

arcsec

x

{\displaystyle \operatorname {arcsec} x}

sin

(

arcsec

x

)

=

x

2

1

x

{\displaystyle \sin(\operatorname {arcsec} x)={\frac {\sqrt {x^{2}-1}}{x}}}

cos

(

arcsec

x

)

=

1

x

{\displaystyle \cos(\operatorname {arcsec} x)={\frac {1}{x}}}

tan

(

arcsec

x

)

=

x

2

1

{\displaystyle \tan(\operatorname {arcsec} x)={\sqrt {x^{2}-1}}}

arccsc

x

{\displaystyle \operatorname {arccsc} x}

sin

(

arccsc

x

)

=

1

x

{\displaystyle \sin(\operatorname {arccsc} x)={\frac {1}{x}}}

cos

(

arccsc

x

)

=

x

2

1

x

{\displaystyle \cos(\operatorname {arccsc} x)={\frac {\sqrt {x^{2}-1}}{x}}}

tan

(

arccsc

x

)

=

1

x

2

1

{\displaystyle \tan(\operatorname {arccsc} x)={\frac {1}{\sqrt {x^{2}-1}}}}

一般解

编辑

每个三角函数都周期于它的参数的实部上,在每个

2

π

{\displaystyle 2\pi }

区间内通过它的所有值两次。正弦和余割的周期开始于

2

π

k

π

2

{\displaystyle 2\pi k-{\frac {\pi }{2}}}

结束于

2

π

k

+

π

2

{\displaystyle 2\pi k+{\frac {\pi }{2}}}

(这里的

k

{\displaystyle k}

是一个整数),在

2

π

k

+

π

2

{\displaystyle 2\pi k+{\frac {\pi }{2}}}

2

π

k

+

3

π

2

{\displaystyle 2\pi k+{\frac {3\pi }{2}}}

上倒过来。余弦和正割的周期开始于

2

π

k

{\displaystyle 2\pi k}

结束于

2

π

k

+

π

{\displaystyle 2\pi k+\pi }

,在

2

π

k

+

π

{\displaystyle 2\pi k+\pi }

2

π

k

+

2

π

{\displaystyle 2\pi k+2\pi }

上倒过来。正切的周期开始于

2

π

k

π

2

{\displaystyle 2\pi k-{\frac {\pi }{2}}}

结束于

2

π

k

+

π

2

{\displaystyle 2\pi k+{\frac {\pi }{2}}}

,接着(向前)在

2

π

k

+

π

2

{\displaystyle 2\pi k+{\frac {\pi }{2}}}

2

π

k

+

3

π

2

{\displaystyle 2\pi k+{\frac {3\pi }{2}}}

上重复。余切的周期开始于

2

π

k

{\displaystyle 2\pi k}

结束于

2

π

k

+

π

{\displaystyle 2\pi k+\pi }

,接着(向前)在

2

π

k

+

π

{\displaystyle 2\pi k+\pi }

2

π

k

+

2

π

{\displaystyle 2\pi k+2\pi }

上重复。

这个周期性反应在一般反函数上:

sin

y

=

x

(

y

=

arcsin

x

+

2

k

π

k

Z

y

=

π

arcsin

x

+

2

k

π

k

Z

)

{\displaystyle \sin y=x\ \Leftrightarrow \ (\ y=\arcsin x+2k\pi {\text{ }}\forall {\text{ }}k\in \mathbb {Z} \ \lor \ y=\pi -\arcsin x+2k\pi {\text{ }}\forall {\text{ }}k\in \mathbb {Z} \ )}

cos

y

=

x

(

y

=

arccos

x

+

2

k

π

k

Z

y

=

2

π

arccos

x

+

2

k

π

k

Z

)

{\displaystyle \cos y=x\ \Leftrightarrow \ (\ y=\arccos x+2k\pi {\text{ }}\forall {\text{ }}k\in \mathbb {Z} \ \lor \ y=2\pi -\arccos x+2k\pi {\text{ }}\forall {\text{ }}k\in \mathbb {Z} \ )}

tan

y

=

x

y

=

arctan

x

+

k

π

k

Z

{\displaystyle \tan y=x\ \Leftrightarrow \ \ y=\arctan x+k\pi {\text{ }}\forall {\text{ }}k\in \mathbb {Z} }

cot

y

=

x

y

=

arccot

x

+

k

π

k

Z

{\displaystyle \cot y=x\ \Leftrightarrow \ \ y=\operatorname {arccot} x+k\pi {\text{ }}\forall {\text{ }}k\in \mathbb {Z} }

sec

y

=

x

(

y

=

arcsec

x

+

2

k

π

k

Z

y

=

2

π

arcsec

x

+

2

k

π

k

Z

)

{\displaystyle \sec y=x\ \Leftrightarrow \ (\ y=\operatorname {arcsec} x+2k\pi {\text{ }}\forall {\text{ }}k\in \mathbb {Z} \ \lor \ y=2\pi -\operatorname {arcsec} x+2k\pi {\text{ }}\forall {\text{ }}k\in \mathbb {Z} \ )}

csc

y

=

x

(

y

=

arccsc

x

+

2

k

π

k

Z

y

=

π

arccsc

x

+

2

k

π

k

Z

)

{\displaystyle \csc y=x\ \Leftrightarrow \ (\ y=\operatorname {arccsc} x+2k\pi {\text{ }}\forall {\text{ }}k\in \mathbb {Z} \ \lor \ y=\pi -\operatorname {arccsc} x+2k\pi {\text{ }}\forall {\text{ }}k\in \mathbb {Z} \ )}

反三角函数的导数

编辑

对于实数

x

{\displaystyle x}

的反三角函数的导函数如下:

d

d

x

arcsin

x

=

1

1

x

2

;

|

x

|

<

1

d

d

x

arccos

x

=

1

1

x

2

;

|

x

|

<

1

d

d

x

arctan

x

=

1

1

+

x

2

d

d

x

arccot

x

=

1

1

+

x

2

d

d

x

arcsec

x

=

1

|

x

|

x

2

1

;

|

x

|

>

1

d

d

x

arccsc

x

=

1

|

x

|

x

2

1

;

|

x

|

>

1

{\displaystyle {\begin{aligned}{\frac {\mathrm {d} }{\mathrm {d} x}}\arcsin x&{}={\frac {1}{\sqrt {1-x^{2}}}};\qquad |x|<1\\{\frac {\mathrm {d} }{\mathrm {d} x}}\arccos x&{}={\frac {-1}{\sqrt {1-x^{2}}}};\qquad |x|<1\\{\frac {\mathrm {d} }{\mathrm {d} x}}\arctan x&{}={\frac {1}{1+x^{2}}}\\{\frac {\mathrm {d} }{\mathrm {d} x}}\operatorname {arccot} x&{}={\frac {-1}{1+x^{2}}}\\{\frac {\mathrm {d} }{\mathrm {d} x}}\operatorname {arcsec} x&{}={\frac {1}{|x|\,{\sqrt {x^{2}-1}}}};\qquad |x|>1\\{\frac {\mathrm {d} }{\mathrm {d} x}}\operatorname {arccsc} x&{}={\frac {-1}{|x|\,{\sqrt {x^{2}-1}}}};\qquad |x|>1\\\end{aligned}}}

举例说明,设

θ

=

arcsin

x

{\displaystyle \theta =\arcsin x\!}

,得到:

d

arcsin

x

d

x

=

d

θ

d

sin

θ

=

1

cos

θ

=

1

1

sin

2

θ

=

1

1

x

2

{\displaystyle {\frac {d\arcsin x}{dx}}={\frac {d\theta }{d\sin \theta }}={\frac {1}{\cos \theta }}={\frac {1}{\sqrt {1-\sin ^{2}\theta }}}={\frac {1}{\sqrt {1-x^{2}}}}}

因为要使根号内部恒为正,所以在条件加上

|

x

|

<

1

{\displaystyle |x|<1}

,其他导数公式同理可证[1]。

表达为定积分

编辑

积分其导数并固定在一点上的值给出反三角函数作为定积分的表达式:

arcsin

x

=

0

x

1

1

z

2

d

z

,

|

x

|

1

arccos

x

=

x

1

1

1

z

2

d

z

,

|

x

|

1

arctan

x

=

0

x

1

z

2

+

1

d

z

,

arccot

x

=

x

1

z

2

+

1

d

z

,

arcsec

x

=

1

x

1

z

z

2

1

d

z

,

x

1

arccsc

x

=

x

1

z

z

2

1

d

z

,

x

1

{\displaystyle {\begin{aligned}\arcsin x&{}=\int _{0}^{x}{\frac {1}{\sqrt {1-z^{2}}}}\,dz,\qquad |x|\leq 1\\\arccos x&{}=\int _{x}^{1}{\frac {1}{\sqrt {1-z^{2}}}}\,dz,\qquad |x|\leq 1\\\arctan x&{}=\int _{0}^{x}{\frac {1}{z^{2}+1}}\,dz,\\\operatorname {arccot} x&{}=\int _{x}^{\infty }{\frac {1}{z^{2}+1}}\,dz,\\\operatorname {arcsec} x&{}=\int _{1}^{x}{\frac {1}{z{\sqrt {z^{2}-1}}}}\,dz,\qquad x\geq 1\\\operatorname {arccsc} x&{}=\int _{x}^{\infty }{\frac {1}{z{\sqrt {z^{2}-1}}}}\,dz,\qquad x\geq 1\end{aligned}}}

x

{\displaystyle x}

等于1时,在有极限的域上的积分是瑕积分,但仍是良好定义的。

无穷级数

编辑

如同正弦和余弦函数,反三角函数可以使用无穷级数计算如下:

arcsin

z

=

z

+

(

1

2

)

z

3

3

+

(

1

3

2

4

)

z

5

5

+

(

1

3

5

2

4

6

)

z

7

7

+

=

n

=

0

[

(

2

n

)

!

2

2

n

(

n

!

)

2

]

z

2

n

+

1

(

2

n

+

1

)

;

|

z

|

1

{\displaystyle {\begin{aligned}\arcsin z&{}=z+\left({\frac {1}{2}}\right){\frac {z^{3}}{3}}+\left({\frac {1\cdot 3}{2\cdot 4}}\right){\frac {z^{5}}{5}}+\left({\frac {1\cdot 3\cdot 5}{2\cdot 4\cdot 6}}\right){\frac {z^{7}}{7}}+\cdots \\&{}=\sum _{n=0}^{\infty }\left[{\frac {(2n)!}{2^{2n}(n!)^{2}}}\right]{\frac {z^{2n+1}}{(2n+1)}};\qquad |z|\leq 1\end{aligned}}}

arccos

z

=

π

2

arcsin

z

=

π

2

[

z

+

(

1

2

)

z

3

3

+

(

1

3

2

4

)

z

5

5

+

(

1

3

5

2

4

6

)

z

7

7

+

]

=

π

2

n

=

0

[

(

2

n

)

!

2

2

n

(

n

!

)

2

]

z

2

n

+

1

(

2

n

+

1

)

;

|

z

|

1

{\displaystyle {\begin{aligned}\arccos z&{}={\frac {\pi }{2}}-\arcsin z\\&{}={\frac {\pi }{2}}-\left[z+\left({\frac {1}{2}}\right){\frac {z^{3}}{3}}+\left({\frac {1\cdot 3}{2\cdot 4}}\right){\frac {z^{5}}{5}}+\left({\frac {1\cdot 3\cdot 5}{2\cdot 4\cdot 6}}\right){\frac {z^{7}}{7}}+\cdots \right]\\&{}={\frac {\pi }{2}}-\sum _{n=0}^{\infty }\left[{\frac {(2n)!}{2^{2n}(n!)^{2}}}\right]{\frac {z^{2n+1}}{(2n+1)}};\qquad |z|\leq 1\end{aligned}}}

arctan

z

=

z

z

3

3

+

z

5

5

z

7

7

+

=

n

=

0

(

1

)

n

z

2

n

+

1

2

n

+

1

;

|

z

|

1

z

i

,

i

{\displaystyle {\begin{aligned}\arctan z&{}=z-{\frac {z^{3}}{3}}+{\frac {z^{5}}{5}}-{\frac {z^{7}}{7}}+\cdots \\&{}=\sum _{n=0}^{\infty }{\frac {(-1)^{n}z^{2n+1}}{2n+1}};\qquad |z|\leq 1\qquad z\neq i,-i\end{aligned}}}

arccot

z

=

π

2

arctan

z

=

π

2

(

z

z

3

3

+

z

5

5

z

7

7

+

)

=

π

2

n

=

0

(

1

)

n

z

2

n

+

1

2

n

+

1

;

|

z

|

1

z

i

,

i

{\displaystyle {\begin{aligned}\operatorname {arccot} z&{}={\frac {\pi }{2}}-\arctan z\\&{}={\frac {\pi }{2}}-\left(z-{\frac {z^{3}}{3}}+{\frac {z^{5}}{5}}-{\frac {z^{7}}{7}}+\cdots \right)\\&{}={\frac {\pi }{2}}-\sum _{n=0}^{\infty }{\frac {(-1)^{n}z^{2n+1}}{2n+1}};\qquad |z|\leq 1\qquad z\neq i,-i\end{aligned}}}

arcsec

z

=

arccos

(

z

1

)

=

π

2

[

z

1

+

(

1

2

)

z

3

3

+

(

1

3

2

4

)

z

5

5

+

(

1

3

5

2

4

6

)

z

7

7

+

]

=

π

2

n

=

0

[

(

2

n

)

!

2

2

n

(

n

!

)

2

]

z

(

2

n

+

1

)

(

2

n

+

1

)

;

|

z

|

4

{\displaystyle {\begin{aligned}\operatorname {arcsec} z&{}=\arccos \left(z^{-1}\right)\\&{}={\frac {\pi }{2}}-\left[z^{-1}+\left({\frac {1}{2}}\right){\frac {z^{-3}}{3}}+\left({\frac {1\cdot 3}{2\cdot 4}}\right){\frac {z^{-5}}{5}}+\left({\frac {1\cdot 3\cdot 5}{2\cdot 4\cdot 6}}\right){\frac {z^{-7}}{7}}+\cdots \right]\\&{}={\frac {\pi }{2}}-\sum _{n=0}^{\infty }\left[{\frac {(2n)!}{2^{2n}(n!)^{2}}}\right]{\frac {z^{-(2n+1)}}{(2n+1)}};\qquad \left|z\right|\geq -4\end{aligned}}}

arccsc

z

=

arcsin

(

z

1

)

=

z

1

+

(

1

2

)

z

3

3

+

(

1

3

2

4

)

z

5

5

+

(

1

3

5

2

4

6

)

z

7

7

+

=

n

=

0

[

(

2

n

)

!

2

2

n

(

n

!

)

2

]

z

(

2

n

+

1

)

2

n

+

1

;

|

z

|

1

{\displaystyle {\begin{aligned}\operatorname {arccsc} z&{}=\arcsin \left(z^{-1}\right)\\&{}=z^{-1}+\left({\frac {1}{2}}\right){\frac {z^{-3}}{3}}+\left({\frac {1\cdot 3}{2\cdot 4}}\right){\frac {z^{-5}}{5}}+\left({\frac {1\cdot 3\cdot 5}{2\cdot 4\cdot 6}}\right){\frac {z^{-7}}{7}}+\cdots \\&{}=\sum _{n=0}^{\infty }\left[{\frac {(2n)!}{2^{2n}(n!)^{2}}}\right]{\frac {z^{-(2n+1)}}{2n+1}};\qquad \left|z\right|\geq 1\end{aligned}}}

欧拉发现了反正切的更有效的级数:

arctan

x

=

x

1

+

x

2

n

=

0

k

=

1

n

2

k

x

2

(

2

k

+

1

)

(

1

+

x

2

)

{\displaystyle \arctan x=\infty {x}{1+x^{2}}\sum _{n=0}^{\infty }\prod _{k=1}^{n}{\frac {2kx^{2}}{(2k+1)(1+x^{2})}}}

(注意对

x

=

0

{\displaystyle x=0}

在和中的项是空积1。)

反三角函数的不定积分

编辑

arcsin

x

d

x

=

x

arcsin

x

+

1

x

2

+

C

,

x

1

arccos

x

d

x

=

x

arccos

x

1

x

2

+

C

,

x

1

arctan

x

d

x

=

x

arctan

x

1

2

ln

(

1

+

x

2

)

+

C

arccot

x

d

x

=

x

arccot

x

+

1

2

ln

(

1

+

x

2

)

+

C

arcsec

x

d

x

=

x

arcsec

x

sgn

(

x

)

ln

|

x

+

x

2

1

|

+

C

=

x

arcsec

x

+

sgn

(

x

)

ln

|

x

x

2

1

|

+

C

arccsc

x

d

x

=

x

arccsc

x

+

sgn

(

x

)

ln

|

x

+

x

2

1

|

+

C

=

x

arccsc

x

sgn

(

x

)

ln

|

x

x

2

1

|

+

C

{\displaystyle {\begin{aligned}\int \arcsin x\,dx&{}=x\,\arcsin x+{\sqrt {1-x^{2}}}+C,\qquad x\leq 1\\\int \arccos x\,dx&{}=x\,\arccos x-{\sqrt {1-x^{2}}}+C,\qquad x\leq 1\\\int \arctan x\,dx&{}=x\,\arctan x-{\frac {1}{2}}\ln \left(1+x^{2}\right)+C\\\int \operatorname {arccot} x\,dx&{}=x\,\operatorname {arccot} x+{\frac {1}{2}}\ln \left(1+x^{2}\right)+C\\\int \operatorname {arcsec} x\,dx&{}=x\,\operatorname {arcsec} x-\operatorname {sgn}(x)\ln \left|x+{\sqrt {x^{2}-1}}\right|+C=x\,\operatorname {arcsec} x+\operatorname {sgn}(x)\ln \left|x-{\sqrt {x^{2}-1}}\right|+C\\\int \operatorname {arccsc} x\,dx&{}=x\,\operatorname {arccsc} x+\operatorname {sgn}(x)\ln \left|x+{\sqrt {x^{2}-1}}\right|+C=x\,\operatorname {arccsc} x-\operatorname {sgn}(x)\ln \left|x-{\sqrt {x^{2}-1}}\right|+C\\\end{aligned}}}

使用分部积分法和上面的简单导数很容易得出它们。

举例

编辑

使用

u

d

v

=

u

v

v

d

u

{\displaystyle \int u\,\mathrm {d} v=uv-\int v\,\mathrm {d} u}

,设

u

=

arcsin

x

d

v

=

d

x

d

u

=

d

x

1

x

2

v

=

x

{\displaystyle {\begin{aligned}u&{}=&\arcsin x&\quad \quad \mathrm {d} v=\mathrm {d} x\\\mathrm {d} u&{}=&{\frac {\mathrm {d} x}{\sqrt {1-x^{2}}}}&\quad \quad {}v=x\end{aligned}}}

arcsin

(

x

)

d

x

=

x

arcsin

x

x

1

x

2

d

x

{\displaystyle \int \arcsin(x)\,\mathrm {d} x=x\arcsin x-\int {\frac {x}{\sqrt {1-x^{2}}}}\,\mathrm {d} x}

换元

k

=

1

x

2

.

{\displaystyle k=1-x^{2}.\,}

d

k

=

2

x

d

x

{\displaystyle \mathrm {d} k=-2x\,\mathrm {d} x}

x

1

x

2

d

x

=

1

2

d

k

k

=

k

{\displaystyle \int {\frac {x}{\sqrt {1-x^{2}}}}\,\mathrm {d} x=-{\frac {1}{2}}\int {\frac {\mathrm {d} k}{\sqrt {k}}}=-{\sqrt {k}}}

换元回x得到

arcsin

(

x

)

d

x

=

x

arcsin

x

+

1

x

2

+

C

{\displaystyle \int \arcsin(x)\,\mathrm {d} x=x\arcsin x+{\sqrt {1-x^{2}}}+C}

加法公式和减法公式

编辑

arcsin x + arcsin y

编辑

arcsin

x

+

arcsin

y

=

arcsin

(

x

1

y

2

+

y

1

x

2

)

,

x

y

0

x

2

+

y

2

1

{\displaystyle \arcsin x+\arcsin y=\arcsin \left(x{\sqrt {1-y^{2}}}+y{\sqrt {1-x^{2}}}\right),xy\leq 0\lor x^{2}+y^{2}\leq 1}

arcsin

x

+

arcsin

y

=

π

arcsin

(

x

1

y

2

+

y

1

x

2

)

,

x

>

0

,

y

>

0

,

x

2

+

y

2

>

1

{\displaystyle \arcsin x+\arcsin y=\pi -\arcsin \left(x{\sqrt {1-y^{2}}}+y{\sqrt {1-x^{2}}}\right),x>0,y>0,x^{2}+y^{2}>1}

arcsin

x

+

arcsin

y

=

π

arcsin

(

x

1

y

2

+

y

1

x

2

)

,

x

<

0

,

y

<

0

,

x

2

+

y

2

>

1

{\displaystyle \arcsin x+\arcsin y=-\pi -\arcsin \left(x{\sqrt {1-y^{2}}}+y{\sqrt {1-x^{2}}}\right),x<0,y<0,x^{2}+y^{2}>1}

arcsin x - arcsin y

编辑

arcsin

x

arcsin

y

=

arcsin

(

x

1

y

2

y

1

x

2

)

,

x

y

0

x

2

+

y

2

1

{\displaystyle \arcsin x-\arcsin y=\arcsin \left(x{\sqrt {1-y^{2}}}-y{\sqrt {1-x^{2}}}\right),xy\geq 0\lor x^{2}+y^{2}\leq 1}

arcsin

x

arcsin

y

=

π

arcsin

(

x

1

y

2

y

1

x

2

)

,

x

>

0

,

y

<

0

,

x

2

+

y

2

>

1

{\displaystyle \arcsin x-\arcsin y=\pi -\arcsin \left(x{\sqrt {1-y^{2}}}-y{\sqrt {1-x^{2}}}\right),x>0,y<0,x^{2}+y^{2}>1}

arcsin

x

arcsin

y

=

π

arcsin

(

x

1

y

2

+

y

1

x

2

)

,

x

<

0

,

y

>

0

,

x

2

+

y

2

>

1

{\displaystyle \arcsin x-\arcsin y=-\pi -\arcsin \left(x{\sqrt {1-y^{2}}}+y{\sqrt {1-x^{2}}}\right),x<0,y>0,x^{2}+y^{2}>1}

arccos x + arccos y

编辑

arccos

x

+

arccos

y

=

arccos

(

x

y

1

x

2

1

y

2

)

,

x

+

y

0

{\displaystyle \arccos x+\arccos y=\arccos \left(xy-{\sqrt {1-x^{2}}}\cdot {\sqrt {1-y^{2}}}\right),x+y\geq 0}

arccos

x

+

arccos

y

=

2

π

arccos

(

x

y

1

x

2

1

y

2

)

,

x

+

y

<

0

{\displaystyle \arccos x+\arccos y=2\pi -\arccos \left(xy-{\sqrt {1-x^{2}}}\cdot {\sqrt {1-y^{2}}}\right),x+y<0}

arccos x - arccos y

编辑

arccos

x

arccos

y

=

arccos

(

x

y

+

1

x

2

1

y

2

)

,

x

y

{\displaystyle \arccos x-\arccos y=-\arccos \left(xy+{\sqrt {1-x^{2}}}\cdot {\sqrt {1-y^{2}}}\right),x\geq y}

arccos

x

arccos

y

=

arccos

(

x

y

+

1

x

2

1

y

2

)

,

x

<

y

{\displaystyle \arccos x-\arccos y=\arccos \left(xy+{\sqrt {1-x^{2}}}\cdot {\sqrt {1-y^{2}}}\right),x

arctan x + arctan y

编辑

arctan

x

+

arctan

y

=

arctan

x

+

y

1

x

y

,

x

y

<

1

{\displaystyle \arctan \,x+\arctan \,y=\arctan \,{\frac {x+y}{1-xy}},xy<1}

arctan

x

+

arctan

y

=

π

+

arctan

x

+

y

1

x

y

,

x

>

0

,

x

y

>

1

{\displaystyle \arctan \,x+\arctan \,y=\pi +\arctan \,{\frac {x+y}{1-xy}},x>0,xy>1}

arctan

x

+

arctan

y

=

π

+

arctan

x

+

y

1

x

y

,

x

<

0

,

x

y

>

1

{\displaystyle \arctan \,x+\arctan \,y=-\pi +\arctan \,{\frac {x+y}{1-xy}},x<0,xy>1}

arctan x - arctan y

编辑

arctan

x

arctan

y

=

arctan

x

y

1

+

x

y

,

x

y

>

1

{\displaystyle \arctan x-\arctan y=\arctan {\frac {x-y}{1+xy}},xy>-1}

arctan

x

arctan

y

=

π

+

arctan

x

y

1

+

x

y

,

x

>

0

,

x

y

<

1

{\displaystyle \arctan x-\arctan y=\pi +\arctan {\frac {x-y}{1+xy}},x>0,xy<-1}

arctan

x

arctan

y

=

π

+

arctan

x

y

1

+

x

y

,

x

<

0

,

x

y

<

1

{\displaystyle \arctan x-\arctan y=-\pi +\arctan {\frac {x-y}{1+xy}},x<0,xy<-1}

arccot x + arccot y

编辑

arccot

x

+

arccot

y

=

arccot

x

y

1

x

+

y

,

x

>

y

{\displaystyle \operatorname {arccot} x+\operatorname {arccot} y=\operatorname {arccot} {\frac {xy-1}{x+y}},x>-y}

arccot

x

+

arccot

y

=

arccot

x

y

1

x

+

y

+

π

,

x

<

y

{\displaystyle \operatorname {arccot} x+\operatorname {arccot} y=\operatorname {arccot} {\frac {xy-1}{x+y}}+\pi ,x<-y}

arcsin x + arccos y

编辑

arcsin

x

+

arccos

x

=

π

2

,

|

x

|

1

{\displaystyle \arcsin x+\arccos x={\frac {\pi }{2}},|x|\leq 1}

arctan x + arccot y

编辑

arctan

x

+

arccot

x

=

π

2

{\displaystyle \arctan x+\operatorname {arccot} x={\frac {\pi }{2}}}

注释

编辑

^

θ

=

arccos

x

{\displaystyle \theta =\arccos x}

,得到:

d

arccos

x

d

x

=

d

θ

d

cos

θ

=

1

sin

θ

=

1

1

cos

2

θ

=

1

1

x

2

{\displaystyle {\frac {d\arccos x}{dx}}={\frac {d\theta }{d\cos \theta }}={\frac {-1}{\sin \theta }}={\frac {1}{\sqrt {1-\cos ^{2}\theta }}}={\frac {-1}{\sqrt {1-x^{2}}}}}

因为要使根号内部恒为正,所以在条件加上

|

x

|

<

1

{\displaystyle |x|<1}

θ

=

arctan

x

{\displaystyle \theta =\arctan x}

,得到:

d

arctan

x

d

x

=

d

θ

d

tan

θ

=

1

sec

2

θ

=

1

1

+

tan

2

θ

=

1

1

+

x

2

{\displaystyle {\frac {d\arctan x}{dx}}={\frac {d\theta }{d\tan \theta }}={\frac {1}{\sec ^{2}\theta }}={\frac {1}{1+\tan ^{2}\theta }}={\frac {1}{1+x^{2}}}}

θ

=

arccot

x

{\displaystyle \theta =\operatorname {arccot} x}

,得到:

d

arccot

x

d

x

=

d

θ

d

cot

θ

=

1

csc

2

θ

=

1

1

+

cot

2

θ

=

1

1

+

x

2

{\displaystyle {\frac {d\operatorname {arccot} x}{dx}}={\frac {d\theta }{d\cot \theta }}={\frac {-1}{\csc ^{2}\theta }}={\frac {1}{1+\cot ^{2}\theta }}={\frac {-1}{1+x^{2}}}}

θ

=

arcsec

x

{\displaystyle \theta =\operatorname {arcsec} x}

,得到:

d

arcsec

x

d

x

=

d

θ

d

sec

θ

=

1

sec

θ

tan

θ

=

1

|

x

|

x

2

1

{\displaystyle {\frac {d\operatorname {arcsec} x}{dx}}={\frac {d\theta }{d\sec \theta }}={\frac {1}{\sec \theta \tan \theta }}={\frac {1}{\left|x\right|{\sqrt {x^{2}-1}}}}}

因为要使根号内部恒为正,所以在条件加上

|

x

|

>

1

{\displaystyle |x|>1}

,比较容易被忽略是

sec

θ

{\displaystyle \sec \theta }

产生的绝对值

sec

1

θ

{\displaystyle \sec ^{-1}\theta }

的定义域是

0

θ

π

,

θ

π

2

{\displaystyle 0\leq \theta \leq \pi ,\theta \neq {\frac {\pi }{2}}}

,所以

tan

θ

=

±

x

2

1

{\displaystyle \tan \theta =\pm {\sqrt {x^{2}-1}}}

,所以

x

{\displaystyle x}

要加绝对值。

θ

=

arccsc

x

{\displaystyle \theta =\operatorname {arccsc} x}

,得到:

d

arccsc

x

d

x

=

d

θ

d

csc

θ

=

1

csc

θ

cot

θ

=

1

|

x

|

x

2

1

{\displaystyle {\frac {d\operatorname {arccsc} x}{dx}}={\frac {d\theta }{d\csc \theta }}={\frac {-1}{\csc \theta \cot \theta }}={\frac {-1}{\left|x\right|{\sqrt {x^{2}-1}}}}}

因为要使根号内部恒为正,所以在条件加上

|

x

|

>

1

{\displaystyle |x|>1}

,比较容易被忽略是

csc

θ

{\displaystyle \csc \theta }

产生的绝对值

csc

1

θ

{\displaystyle \csc ^{-1}\theta }

的定义域是

π

2

θ

π

2

,

θ

0

{\displaystyle -{\frac {\pi }{2}}\leq \theta \leq {\frac {\pi }{2}},\theta \neq 0}

参见

编辑

数学主题

正切半角公式

平方根

外部链接

编辑

埃里克·韦斯坦因. Inverse Trigonometric Functions. MathWorld.

http://mathworld.wolfram.com/InverseTangent.html(页面存档备份,存于互联网档案馆)

Copyright © 2022 世界杯预选赛欧洲区_世界杯在哪个国家举行 - kd896.com All Rights Reserved.